Observations of total peroxy nitrates and aldehydes: measurement interpretation and inference of OH radical concentrations

P. A. Cleary1*, P. J. Wooldridge1, D. B. Millet2**, M. McKay2, A. H. Goldstein2,4, and R. C. Cohen1,3,4

1Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
2Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, USA
3Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
4Environment Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

* now at: Department of Chemistry, University of Pennsylvania, 231 S. 34th St, Philadelphia, PA 19104, USA
** now at: Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA

Abstract. We describe measurements of total peroxy nitrates (ΣPNs), NO2, O3 and several aldehydes at Granite Bay, California, during the Chemistry and Transport of the Sacramento Urban Plume-2001 (CATSUP 2001) campaign, from 19 July–16 September 2001. We observed a strong photochemically driven variation of ΣPNs during the day with the median of 1.2 ppb at noon. Acetaldehyde, pentanal, hexanal and methacrolein had median abundances in the daytime of 1.2 ppb, 0.093 ppb, 0.14 ppb, and 0.27 ppb, respectively. We compare steady state and time dependent calculations of the dependence of ΣPNs on aldehydes, OH, NO and NO2 showing that the steady state calculations are accurate to ±30% between 10:00 and 18:00 h. We use the steady state calculation to investigate the composition of ΣPNs and the concentration of OH at Granite Bay. We find that PN molecules that have never been observed before make up an unreasonably large fraction of the ΣPNs unless we assume that there exists a PAN source that is much larger than the acetaldehyde source. We calculate that OH at the site varied between 2 and 7×106 molecule cm−3 at noon during the 8 weeks of the experiment.

1 Introduction

Peroxyacetyl nitrates (or peroxycarboxylic nitric anhydrides) are a class of atmospheric reactive nitrogen (NOy≡ NO + NO2 + peroxy nitrates + alkyl and multifunctional nitrates + HONO + HNO3 + NO3 + 2×N2O5) produced by photochemical reactions of aldehydes and photolysis of ketones, such as acetone and methyl glyoxal (Roberts et al., 2002; Blitz et al., 2004; Romero et al., 2005). Peroxyacetyl nitrate, PAN, the most abundant and widely studied peroxyacetyl nitrate, is produced through the reaction of acetaldehyde with OH, (R1) producing peroxyacetyl radical (CH2CO(O)O, or PA) followed by the association of PA with NO2 (R2). Other sources of PA, such as methyl glyoxal photolysis, may be important, especially where isoprene is the predominant reactive volatile organic compound (VOC) (Roberts et al., 2001). Loss of PAN occurs primarily by the sequential processes of thermal decomposition to regenerate PA (R–2) followed by reaction of PA with NO (R3).

\[
\begin{align*}
\text{acetaldehyde} + \text{OH}(+\text{O}_2) & \rightarrow \text{PA} + \text{H}_2\text{O} & (R1) \\
\text{PA} + \text{NO}_2 & \rightarrow \text{PAN} & (R2) \\
\text{PAN} & \rightarrow \text{PA} + \text{NO}_2 & (R2-2) \\
\text{PA} + \text{NO} & \rightarrow \text{products} & (R3) \\
\text{PAN} + \text{OH} & \rightarrow \text{products} & (R4)
\end{align*}
\]

The reaction of PAN with OH (R4) is slow (Talukdar et al., 1995), however this sink of PN may be important for other PN species, such as MPAN. Figure 1 summarizes the processes represented by R1–R4. The thermal decomposition of PAN (R2-2) has a steep temperature dependence. PAN has a lifetime to thermal decomposition of hours or less in the lower troposphere (T>287 K) and of months in the mid- to high latitude free troposphere (Temp<263 K). PAN that is created in situ or transported to the upper troposphere from a source region near the surface can be transported globally (Singh and Hanst, 1981; Beine et al., 1996). When the air containing PAN warms, NO2 is released; thus PAN serves as a vehicle for global scale redistribution of
Emission Chemical production

\[\text{CH}_3\text{CHO} \]

Fig. 1. Diagram of acetaldehyde and PAN photochemistry.

\[\text{NO}_2 (\text{NO}_x = \text{NO} + \text{NO}_2) \]. Peroxynitrates are also a well known component of urban photochemistry (Stephens et al., 1956; Singh, 1987; Corsmeier et al., 2002b; Rappengluck et al., 2003). PAN is often observed to be correlated with \(O_3 \) (Penkett and Brice, 1986; Gaffney et al., 1999; Rappengluck et al., 2000; Corsmeier et al., 2002a; Gaffney et al., 2002; Rubio et al., 2004) and the ratios of different PANs have been used to assess the relative contributions of anthropogenic and biogenic sources of \(O_3 \) (Williams et al., 1997; Roberts et al., 2001). In addition to PAN, other peroxynitrates are formed following OH-initiated hydrogen abstraction of larger aldehydes. Simultaneous measurements of the ambient concentrations of the aldehyde – peroxyacetyl nitrate pairs, propanal-peroxypropionic nitric anhydride (PPN) (Roberts et al., 2001; Roberts et al., 2003), acrolein-peroxyacrylic nitric anhydride (APAN) (Roberts et al., 2003), and methacrolein-MPAN (Roberts et al., 2001; Roberts et al., 2003) have been described. The peroxyacetyl nitrates derived from isobutanal: peroxyisobutyric nitric anhydride (PiBN) (Gaffney et al., 1999; Glavas and Moschonas, 2001) and benzaldehyde: peroxybenzoic nitric anhydride (PBzN) (Atkinson and Lloyd, 1984) have also been identified in the atmosphere. Many other PN compounds have been observed in the laboratory (Wallington et al., 1995; Noziere and Barnes, 1998; Sehested et al., 1998; Tyndall et al., 2001; Hurst-Bowman et al., 2003) and based on these laboratory and field measurements, it is reasonable to assume that virtually every aldehyde observed in the atmosphere should have a corresponding peroxyacetyl nitrates. Glavas and Moschonas (2001) have argued that the relative ratios of peroxy nitrates can be deduced from the ratios of parent aldehydes. Roberts et al. (2001, 2003) use a sequential reaction model (Reactions 1–4 and their analogues as applied to each PN/aldehyde pair) to explain the correlations between the observed ratios of PPN/propanal, PAN/acetaldehyde, MPAN/methacrolein and APAN/acrolein (Roberts et al., 2001, 2003). In their analyses, Roberts et al. (2001, 2003) attribute the variability PN/aldehyde ratios to plume age and assume that the observations represent oxidation of an isolated plume downwind of a localized source of aldehydes. They show this model does a reasonable job at representing the correlations between different ratios of PN/aldehyde pairs.

In this paper, we describe simultaneous measurements of total peroxy nitrates (\(\Sigma \)PANs), aldehydes, \(\text{NO}_2 \) and \(O_3 \) at the eastern edge of the suburbs of Sacramento, CA as a part of the CATSUP-2001 (Chemistry and Transport of the Sacramento Urban Plume 2001) experiment. We take a different point of view from the papers of Roberts et al. and assume that PANs in the urban boundary layer do not result from emission at a point source but rather are continually affected by emissions of their aldehyde precursors. We compare time dependent and steady state calculations for PN showing that PANs are in approximate steady state with their source molecules. We then use the steady state calculation to investigate the partitioning of \(\Sigma \)PNs among a variety of individual peroxy nitrate and to investigate the concentration of OH at the Granite Bay site.

2 Experimental

Observations of \(\text{NO}_2 \), \(\Sigma \)PANs, total alkyl nitrates (\(\Sigma \)ANs), \(\text{HNO}_3 \), \(O_3 \), VOC, and meteorological variables were collected from 19 July–16 September 2001 on the property of Eureka Union School District in Granite Bay, CA (38° 44.23′ N, 121° 12.01′ W, 277 m above sea level). This site is located 30 km north-east of Sacramento, CA, at the eastern edge of the suburban region and between two major highways: Interstate 80, 8 km to the north and Highway 50, 13 km to the south. The instruments were housed in a temperature-controlled trailer with inlets mounted on a rooftop tower 7 m above the ground, (1–2 m above the trailer). The site and instruments are described in detail in Cleary et al. (2005) and only a brief description is included here.

Briefly, wind patterns observed at the site were quite regular, at speeds of 2–2.4 m/s from the southwest (directly from Sacramento) during the afternoon (12:00–17:00 h) and from the southeast at 1.6 m/s (downslope from the Sierra Nevada) at night (20:00–06:00 h). On most days, the wind direction rotated smoothly and continuously from southeasterlies to southwesterlies between the hours of 06:00–12:00 h and then rotated back between 17:00 and 20:00 h. On a typical day, the air parcels observed at Granite Bay at noon had arrived at the Sacramento urban core from the South and then turned toward Granite Bay traveling over the entire length of the Sacramento metropolitan region. Temperatures (mean \(\pm 1 \sigma \)) at Granite Bay during the campaign were 16 (±2.4) °C at 05:00 h rising to 33 (±3.6) °C at 16:00 h. Skies were clear on all but two days of the campaign, as determined from
observations of photosynthetically active radiation. O₃ was measured with a Dasibi 1008 ultraviolet photometric ozone analyzer.

NO₂, ΣPNs, ΣANs and HNO₃ were measured using a two-channel thermal-dissociation laser induced fluorescence (TD-LIF) instrument (Day et al., 2002). Briefly, an ambient sample flows rapidly through two ovens where dissociation of NO₂ (NO₂ ≡ HNO₃ + ΣANs+ΣPNs) species to NO₂ occurs. Three different temperatures are used: 180°C, 350°C and 550°C, to observe the three distinct classes of NO₂: ΣPNs, ΣANs and HNO₃. The ΣPNs measurement includes PAN, PPN, MPAN, PiBN, PBN and any other peroxy nitate present in the atmosphere. N₂O₅ dissociates at this temperature; however, for the inlet configuration we used at Granite Bay, it is likely N₂O₅ was converted to HNO₃ on the inlet surfaces prior to the dissociation region. The NO₂ signal is the sum of the NO₂ contained in all compounds that dissociate at or below the oven temperature, and the difference between the NO₂ observed in two separate channels at adjacent temperature set points is associated with a specific class of compounds. For these measurements NO₂ was measured using a pulsed dye laser with time gated detection (Thornton et al., 2000). We measured NO₂, ΣPNs, ΣANs, and HNO₃ by sequentially adjusting the temperatures of each oven so the pair of ovens remained only one class of NO₃ species apart. The measurements were made on a 4-h repeating cycle. Each time an oven set point was raised, it was pre-programmed to overshoot the set point for a few seconds in order to remove compounds adsorbed to the walls. ΣANs were measured for 75 min each cycle, ΣPNs and NO₂ for 40 min each cycle, and HNO₃ for 80 min each cycle, with the remaining time used for measuring zeros, calibrating, and obtaining other diagnostics. During the last six days of the campaign, 11 September–16 September, ΣPNs and NO₂ were measured continuously.

The accuracy for each class of NO₃ compound is 15%. Comparison of LIF with other NO₂ measurements indicates the LIF measurements of NO₂ are within 5% of other NO₂ measurements (Thornton et al., 2003). The NO₂ signals observed by TD-LIF are adjusted to account for small (5%) effects of secondary chemistry within our inlet (Rosen et al., 2004). The most important effects are associated with reactions of RO₂ (e.g. PA) radicals and O₃ with NO. The extent of these interferences depends on the inlet configuration. Over the last few years, we have used 3 different configurations. The configuration used for the Granite Bay experiments was identical to that used in Houston (Rosen, 2004), except that the machined PFA Teflon inlet tip piece was replaced with standard molded fittings for better HNO₃ transmission. This inlet was a 2-channel version of the one described in detail by Day et al. (2002). A key feature was the insertion of pressure-reducing orifices between the heated tubes and the 15 to 20 m long PFA Teflon tubes leading to the instrument housed at the base of the tower. Laboratory experiments confirm that interferences in this configuration are small and that our corrections accurately accounted for their effects. Comparison of ΣPNs to the sum of individual PAN compounds during this inlet and two other inlet configurations during experiments in Houston, TX (Rosen, 2004), from the DC-8 aircraft, from the NCAR C-130 and at a surface site in Nova Scotia have shown that ΣPNs are usually within 15% of the sum of PAN, PPN and MPAN (Wooldridge et al., in preparation). The largest differences we have ever observed, as much as 30% (ΣPNs > ΣPNi), were observed when sampling ambient air during the PAN Intercomparison Experiment in Boulder, CO during summer 2005. During this experiment agreement between ΣPN and specific PN measurements was within 10% for test samples of specific compounds including PAN and PPN (Tyn dall et al., 2005). However, the poor agreement when sampling ambient air was shown to result from a large interference in the ΣPN measurements that was proportional to the product of NO with O₃. Laboratory experiments confirm that the configuration used for the PIE experiments, which omitted the pressure reduction orifices at the back of the heaters in order to keep the pressure at nearly ambient up to the expansion nozzles for the supersonic jets (based on the design outlined by Cleary et al., 2002), resulted in much higher interferences than other configurations because of the longer residence times and higher pressures within 20 m of tubing connecting the heated inlet and the instrument. The inlet configuration used for the Granite Bay experiments had a more rapid pressure drop and thus has much smaller interferences, ones that we believe are accurately accounted for in the analysis.

Most of the potential systematic error in the individual classes observed by TD-LIF are correlated, in the sense that if ΣPNs are too high by 5% then likely so are NO₂, ΣANs and HNO₃. In contrast, ratios of the different classes will be more accurate because these systematic effects will cancel.

We did not measure NO or NO₃ directly. We calculate NO using the photostationary state equation:

\[
\frac{[NO]}{[O_3]} = \frac{J_{NO_2}[NO_2]}{k_{NO_2+O_3}[O_3] + k_{HNO_2+NO}[HNO_2 + RO_2]}
\]

(1)

HO₂+RO₂ concentrations are estimated to be 0.020ppb at noon based on a box model calculation of peroxy-radicals generated from the distribution of 45 VOC measured at Granite Bay (the diurnal profile of these compounds was scaled to PAR). The photolysis rate of NO₂ was estimated by scaling the J-values obtained from the TUV model (UCAR, 2002) for 11 August 2001, using total ozone column of 299 DU, as measured by TOMS (McPeters, 2001) to the observed PAR. ΣNO₃ is calculated as the sum of NO₄, NO₂, ΣPNs, ΣANs, and HNO₃. The largest uncertainty in the NO₃ calculation is due to uncertainties in the calculation of peroxy-radicals. Uncertainties of a factor of two in the peroxy radicals propagate to 15% uncertainty in NO₃. We conservatively estimate the total uncertainty at 25%. Volatile organic compounds, including aldehydes, were measured hourly with a fully automated, in situ, two-channel
Table 1. Observed aldehydes at Granite Bay in comparison to those made in Berlin (Grossmann et al., 2003), Nashville (McClenny et al., 1998) and rural Germany (Wedel et al., 1998) given as average concentrations.

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>this study (ppb)</th>
<th>Berlin, Germany</th>
<th>Nashville, USA</th>
<th>TN rural, northwestern Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>1.20</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propanal</td>
<td>0.14*</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butanal</td>
<td>0.10</td>
<td>0.40</td>
<td>0.22</td>
<td>0.011</td>
</tr>
<tr>
<td>Pentanal</td>
<td>0.093</td>
<td>0.10</td>
<td>0.33</td>
<td>0.023</td>
</tr>
<tr>
<td>Hexanal</td>
<td>0.140</td>
<td>0.15</td>
<td>0.14</td>
<td>0.002</td>
</tr>
<tr>
<td>Heptanal</td>
<td>0.07</td>
<td>0.27</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Octanal</td>
<td>0.02</td>
<td>0.52</td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>Nonanal</td>
<td>0.08</td>
<td>0.52</td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>Methacrolein</td>
<td>0.270</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* estimated, see section 5 of text. 1 (Grossmann et al., 2003) 2 (McClenny et al., 1998) 3 (Wedel et al., 1998)

Fig. 2. Measured NO\(_2\) and ΣPNs from 27 July through 16 September 2001. The 10 s data points were placed into 1-h bins corresponding to the VOC time base and the median of each bin is presented here.

3 Observations

Measurements of ΣPNs and NO\(_2\) from 19 July–16 September 2001 are shown in Fig. 2. ΣPNs ranged from 0 to 0.080 ppb at night and had a midday peak that typically occurred between noon and 01:00 p.m. ranging from 0.5–2.5 ppb, with a median of 1.2 ppb. The average daytime (08:00–20:00 h) mixing ratio of ΣPNs was 0.910 ppbv. NO\(_2\) peaked during both the morning and evening rush hours with mean concentrations of 8 and 10 ppb, respectively. Typical noontime concentrations of NO\(_2\) were 4.5 ppb. At noon, ΣPNs are typically 10% of ΣNO\(_{yi}\), and they range from 10–30% of NO\(_2\). These observations of ΣPN mixing ratios are within the typical range of peroxy-nitrates measured at other locations. For example, at the University of California Blodgett Forest Research Center, 5 h downwind of the Granite Bay site, summertime ΣPN measurements peak later in the day (08:00 p.m.) at around 0.550 ppb, are 10–20% of ΣNO\(_{yi}\) and 15–25% of NO\(_2\) (Day et al., 2003). Roberts et al. (2002) report the sum of 3 PNs: PAN, PPN and MPAN, observed outside of Nashville in June 1999, had an average daytime mixing ratio of 1.14 ppb (10% of NO\(_2\)). At La Porte, Texas
during August–September 2000, Roberts et al. (2001) report the sum of 5 different PNs, PAN, PPN, MPAN, PiBN and APAN was on average 1.18 ppb, an amount we calculate was 8% of NO$_x$ and 17% of NO$_2$ (NO$_y$-NO$_x$) at that site.

The aldehyde observations are shown in Fig. 3. Acetaldehyde is the most abundant aldehyde, with concentrations ranging 0.5 to 3 ppb. Except for methacrolein, the aldehydes reached a maximum at night (when the boundary layer is thinnest) suggesting that in addition to photochemical production, direct emissions and/or NO$_3$ chemistry affect the abundance of aldehydes at this site. Acetaldehyde was generally constant in the morning, and then decreased in the early afternoon, rising in the evening to its nighttime maximum. However, several different daytime patterns were observed as shown in Fig. 4a, which shows acetaldehyde and ΣPN observations from 11–16 September 2001. Nearly constant daytime acetaldehyde was observed on 12 and 16 September; a morning increase and afternoon decrease were observed on 13 and 15 September; and a sharp midday decrease was observed on 14 September. On 11 September, the acetaldehyde mixing ratio increased throughout the day. Pentanal and hexanal have similar diurnal patterns to acetaldehyde, although they both show patterns of decreasing midday concentration more frequently than acetaldehyde. Methacrolein generally increased in the morning and peaked in the afternoon, and was strongly correlated to isoprene mixing ratios. Median daytime observations of acetaldehyde, pentanal, hexanal and methacrolein were 1.2 ppb, 0.093 ppb, 0.14 ppb, and 0.27 ppb, respectively.

Our observed mixing ratios of aldehydes are in the range of those reported at two other urban sites, as shown in Table 1. Grossman et al. (2003) measured C$_2$–C$_{10}$ aldehydes and methacrolein in July 1998 near Berlin and report the higher n-aldehydes (C$_7$–C$_{10}$) had a diurnal pattern with maxima at 10:00 a.m. and minima at midnight. McClenny et al. (1998) report n-aldehydes at Nashville are strongly correlated with each other, and exhibit a diurnal cycle with minima in the early evening and maxima at noon. Wedel et al. (1998) report C$_5$–C$_9$ n-aldehydes in rural north-eastern Germany, during August, 1994 and describe night-time maxima in aldehydes. Concentrations of all aldehydes were much lower at this rural site. Grossman et al. (2003) also report that typical maxima were 2–5 times the minima for all aldehydes observed. These observations indicate that the aldehydes we were able to observe are not a complete set. Measurements have shown that there are significant aldehyde emissions from a variety of plant species (Wildt et al., 2003; Vuorinen et al., 2005) and that aldehydes are produced as a result of ozonolysis reactions with fatty acids. Nonanal has received special attention because its production is particularly favorable (Thornberry and Abbatt, 2004; Hung et al., 2005). Ambient mixing ratios for propanal, butanal and hexanal have been reported to be higher than those of pentanal; while mixing ratios of heptanal and octanal are lower than pentanal. Nonanal has been observed at mixing ratios approximately double those of pentanal.

4 Steady state calculation of peroxy nitrates

ΣPNs, the measurement of total peroxy nitrates, are a new measurement (Day et al., 2002), not previously analyzed in detail. To evaluate the contributions of individual PNs (denoted PN$_i$) to ΣPNs we note that when temperatures and OH concentrations are high, individual PNs are approximately in steady state with their aldehyde sources (R$_1$) and their sink
through the peroxy radical (PA$_i$) + NO reaction (R3). PN$_i$ and PA$_i$ are in rapid steady state with a lifetime on the order of minutes for typical surface conditions at Granite Bay in summer, at a daytime mean of 297 K. The steady state condition for the sum of a PN$_i$ and PA$_i$ will be satisfied when the lifetime of PN$_{Ti}$ (PN$_{Ti}$=PA$_i$+PN$_i$) is of order a few hours or less and the concentration of the aldehyde precursor is nearly constant on that timescale. For example, the lifetime of [PN+PA] with respect to loss to R$_3$ is on the order of 40 min at 298 K using rate coefficients outlined in Table 2 at typical noontime values of NO and NO$_2$ at Granite Bay. The lifetimes of other PNs are similar or shorter in cases where the reaction with OH is rapid. Thus, at temperatures greater than 298 K, each PN$_i$ approaches a steady state with its aldehyde source in about an hour. However, the lifetime of acetaldehyde with respect to loss to OH at noon (298 K, OH = 6 x 106 molecule cm$^{-3}$) is about 3 h. If there were no sources of aldehydes, PNs might not reach a steady state when OH mixing ratios are at their peak, because of the rapidly decreasing aldehyde concentrations. However, as discussed above, aldehydes exhibit a range of diurnal patterns and the aldehydes are often observed to have nearly constant mixing ratios or to be decreasing more slowly than the lifetime of 3 h during the day. Thus, PN$_{Ti}$ likely achieves near steady-state conditions.

Steady state equations for PA$_i$ and the (PN$_{Ti}$/aldehyde)$_i$ ratio derived from Reactions (1)–(4) are:

$$[\text{PA}_i]_{ss} = \frac{k_{1\text{aldehyde}} [\text{OH}] [\text{aldehyde}]_{i} + k_{-2} [\text{PN}_i]}{k_2 [\text{NO}_2] + k_3 [\text{NO}]}$$ \hspace{1cm} (2)$$

$$[\text{PN}_{Ti}]_{i} = \frac{k_{1\text{aldehyde}} * \beta * [\text{OH}]}{k_{-2} * (1 - \beta) + k_4 [\text{OH}]}$$ \hspace{1cm} (3)$$

where $\beta = \frac{1}{k_4 [\text{NO}] + k_3 [\text{NO}_2] + 1}$

These equations assume each PN has a single aldehyde source and that the only important sink of PNs is reaction of PA with NO. For the conditions at Granite Bay, we calculate that PA radicals make up less than 1% of HO$_2$ + RO$_2$ and the loss rate for any peroxy-radical to reaction with NO is about 300 times faster than peroxy-radical self reactions.

In order to evaluate the accuracy of the steady state approximation represented by Eqs. (2) and (3), we solved the differential equation (Eq. 4) describing PAN mixing ratios over the course of a day by numerical integration:

$$\frac{d \text{PAN}}{d(t)} = \beta(t) * k_1 [\text{acetaldehyde}(t)] [\text{OH}] - k_{-2} * (1 - \beta(t)) * [\text{PAN}(t)].$$ \hspace{1cm} (5)$$

We compare the solution of the time dependent integration (Eq. 4) to the instantaneous steady state (Eq. 3) solution using 4 different scenarios of the production/emission rates for acetaldehyde. We choose four scenarios which we believe to be either typical or limiting cases for the aldehyde source strength at this site. The four scenarios were: A) acetaldehyde production equal to loss (P$_{\text{acetal}}$=L$_{\text{acetal}}$), B) acetaldehyde production equal to zero (P$_{\text{acetal}}$=0), C) acetaldehyde production equal to 1.5 times loss (P$_{\text{acetal}}$=1.5L$_{\text{acetal}}$) and D) P$_{\text{acetal}}$=1.5L$_{\text{acetal}}$ from sunrise to noon, and P$_{\text{acetal}}$=(2/3)L$_{\text{acetal}}$ from noon to sunset. Acetaldehyde loss (L$_{\text{acetal}}$) was determined by its reaction rate with the OH field defined above. The acetaldehyde concentrations produced in these scenarios are shown in Fig. 5. Scenario A is a close match to the observations on 12 September 2001. Scenario D produces acetaldehyde concentrations similar to that observed on 13 September 2001. Scenarios B and C represent limiting cases that describe behavior of acetaldehyde outside the range of the observations and thus put useful bounds on the comparison of the time dependent and steady state calculations.

Table 2. Important temperature dependent rate coefficients for PAN and products. All rate coefficients from (Atkinson et al., 1997, 2004).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k(T) or k(T,[M])*</th>
<th>k (300 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN → PA + NO$_2$</td>
<td>$k_0 = 4.9 \times 10^{-3}$ s$^{-1}$ exp (-12 T/100)</td>
<td>6.3×10^{-4} s$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$k_\infty = 5.4 \times 10^{16}$ exp (-13830 T/100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F$_{\text{cent}}$ = 0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 1.14</td>
<td></td>
</tr>
<tr>
<td>PA + NO$_2$ → PAN</td>
<td>$k_0 = 2.7 \times 10^{-28}$ (T/300)$^{-7.1}$</td>
<td>8.6×10^{-12} cm3 mole$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$k_\infty = 2.3 \times 10^{-11}$ (T/300)$^{-0.9}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F$_{\text{cent}}$ = 0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 1</td>
<td></td>
</tr>
<tr>
<td>PA + NO → Products</td>
<td>8.1×10^{-12} exp (270 T)</td>
<td>2.0×10^{-11} cm3 mole$^{-1}$ s$^{-1}$</td>
</tr>
</tbody>
</table>

*Where $k(M) = \frac{k_0 [M]}{1 + \frac{k_0 [M]}{k_\infty}} * F_e$ and $\log F_c = \frac{\log F_{\text{cent}}}{1 + \left(\frac{k_0 [M]}{k_\infty} \right)^2}$.
The calculations were initialized using 0.300 ppb for [PAN] and 1.0 ppb for [acetaldehyde]. These are typical values at sunrise. We used as input the median diurnal cycles of the ratio [NO]/[NO₂], temperature, and an estimate for OH ranging from 1×10⁶ to 1.4×10⁷ molecule cm⁻³ at noon (the highest value based on the results of Dillon et al. (2002) who fit a Lagrangian model describing mixing and oxidation of a range of VOC measurements to estimate OH). The temporal variation in OH was estimated by scaling to PAR. The parameters are shown in Fig. 6, with the highest modeled noontime OH.

Figures 7a and b, respectively, show the steady state and time dependent calculations of PAN for scenarios A and D. Figure 8 shows the ratio of the steady state (SS) to the time dependent (TD) calculations of PAN versus time of day for all 4 scenarios. After an initial spin up time of about two hours, the SS calculation is within ±30% of the TD calculation through the remainder of the day for scenarios A, C and D. For scenario A when acetaldehyde concentrations are constant, the steady state calculation agrees with the TD calculation to within ±10%. For scenario B, where the production of acetaldehyde is zero, the acetaldehyde concentration is changing most rapidly compared to the PAN lifetime. As a result, the time dependent calculation has higher PN concentrations than steady state. Even in this scenario the time dependent calculation differs from the steady state approximation by only 60% (SS/TD=0.4). For scenario C, the net acetaldehyde lifetime is comparable to the PAN lifetime and the steady state calculation predicts 40% more PAN than the time dependent calculation before 11:00 h. The two calculations for scenario C converge to within 25% at noon. The sign of the SS/TD ratio reflects that production of acetaldehyde is larger than losses in scenario C. Scenario D represents a situation such as on 13 September where there is net production of acetaldehyde in the morning but a decrease during the afternoon. This scenario combines the effects seen in scenarios B and C. The steady state calculation overestimates PAN in the morning, crosses through a point where the two calculations agree at about noon before underestimating PAN for the remainder of the afternoon. We tested whether the comparison of time-dependent and steady state calculations had a strong sensitivity to the assumed OH. Using a more than ten-fold decrease in OH, 1×10⁶ at noon, the differences between
the steady state and time dependent calculations decreased slightly for scenarios B, C, and D at all times of the day. Steady-state and time dependent calculations using the lower OH agreed less well during the rush hour when the NO/NO$_2$ ratio is highest for scenario A. The steady-state/time dependent model disagreement is the highest when the ratio of the rate of PA radical generation to the rate of decomposition of PNs is approximately 2 (typically this ratio is close to 10).

Most of the observations have similar diurnal patterns to scenarios A or D, and we interpret the comparisons presented in this section to indicate that the steady state approximation for PN to aldehyde ratios is accurate to 30% or better outside of the rush hour periods. We note that one implication of our conclusions that PNs are in steady-state with NO$_x$ is that they should not be thought of as terminal sinks for NO$_x$ but rather as part of the available NO$_x$.

4.1 Partitioning of ΣPNs and estimates of OH: model approach

We calculate ΣPNs as the sum of steady state expressions (EQN 3) for each individual peroxynitrate:

$$\Sigma \text{PNs} = \frac{\beta \cdot k_{ij} \cdot [\text{OH}] \cdot [\text{acet}]}{k_{-2}(1-\beta) + k_u[\text{OH}]} + \frac{\beta \cdot \alpha_i \cdot k_{ij} \cdot [\text{OH}] \cdot [\text{MACR}]}{k_{-2}(1-\beta) + k_u[\text{OH}]} + \frac{\beta \cdot \alpha_i \cdot k_{ij} \cdot [\text{OH}] \cdot [\text{PN}]}{k_{-2}(1-\beta) + k_u[\text{OH}]} + \frac{\beta \cdot \alpha_i \cdot k_{ij} \cdot [\text{OH}] \cdot [\text{hlxan}]}{k_{-2}(1-\beta) + k_u[\text{OH}]} + \ldots$$

The reaction rate for each aldehyde with OH (k_{ij}), each PN$_i$ with OH (k_{ui}) and the branching ratio of aldehydic abstraction (α_i) by OH are specific to each PN$_i$/aldehyde$_i$ pair. For example, MPAN has a significant loss to reaction with OH, producing products that are not ΣPNs (Orlando et al., 2002). The reactions of other PNs with OH are slow, but the magnitudes may increase with carbon number (Jenkin et al., 1997). The reactions of each peroxy-radical with NO$_2$ and NO (rate constants k_2 and k_3) are estimated to be the same for all peroxyacetyl radicals. The dissociation of each PN back to NO$_2$ (k_{-2}) is also estimated to be the same as that measured for PAN (Atkinson et al., 1997, 2004). The unique solution to Eq. (5) results in determination of the OH concentration and the concentrations for individual peroxynitrites for each point in the data set. In our tests of the accuracy of the steady-state model we calculated PAN from aldehydes and an assumed profile of OH, the accuracy estimate of 30% for that relationship also applies to calculations of OH using measured ΣPNs and aldehydes, if the assumption that the ΣPNs and aldehydes are in steady-state holds and if the aldehyde sources of PA$_i$ represented in the model are a complete set. We solve Eq. (5) for three models: M1 using the observed aldehydes and constraining the relationship of PPN to PAN, M2) adding to M1 an estimate of the concentration for a broader range of aldehydes and M3) adding to M2 an additional source of PAN. One of the more abundant and well-studied PNs is PPN. However, we do not have a measurement of propenal, the aldehyde precursor to PPN. At inland sites in California, the PPN/PAN ratio has been observed to be 0.15 with little variation (Grosjean, 2003, and references therein). Thus we fix the PPN to PAN ratio at 0.15 and adjust the propenal concentration accordingly in all three models.
Table 4. Distribution of peroxy nitrates as calculated using aldehydes in Table 3 and Eq. (6). The percent of total peroxy nitrates, the ratio to PAN and the median mixing ratio are given for each model.

<table>
<thead>
<tr>
<th>PN</th>
<th>% ΣPNs M1</th>
<th>% ΣPNs M2</th>
<th>% ΣPNs M3</th>
<th>PN:PAN ratio M1</th>
<th>PN:PAN ratio M2</th>
<th>PN:PAN ratio M3</th>
<th>Daytime average (ppb) M1</th>
<th>Daytime average (ppb) M2</th>
<th>Daytime average (ppb) M3</th>
<th>kOH x10^{-12} (cm^3 molecule^{-1} s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN</td>
<td>65.2%</td>
<td>50%</td>
<td>69.7%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.58</td>
<td>0.45</td>
<td>0.62</td>
<td>0.03^a</td>
</tr>
<tr>
<td>PPN</td>
<td>9.8%</td>
<td>7.5%</td>
<td>10.4%</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.087</td>
<td>0.067</td>
<td>0.092 N.A.</td>
<td>4.7*</td>
</tr>
<tr>
<td>ΠbBN</td>
<td>-</td>
<td>2.5%</td>
<td>1.1%</td>
<td>0.05</td>
<td>0.02</td>
<td>-</td>
<td>0.022</td>
<td>0.010</td>
<td>-</td>
<td>4.7*</td>
</tr>
<tr>
<td>ΠbBN</td>
<td>-</td>
<td>2.5%</td>
<td>1.1%</td>
<td>0.05</td>
<td>0.02</td>
<td>-</td>
<td>0.022</td>
<td>0.010</td>
<td>-</td>
<td>4.7*</td>
</tr>
<tr>
<td>c5PAN</td>
<td>7.7%</td>
<td>5.8%</td>
<td>2.6%</td>
<td>0.12</td>
<td>0.12</td>
<td>0.04</td>
<td>0.069</td>
<td>0.054</td>
<td>0.023</td>
<td>6.9*</td>
</tr>
<tr>
<td>C5PAN</td>
<td>11%</td>
<td>8.5%</td>
<td>3.9%</td>
<td>0.17</td>
<td>0.17</td>
<td>0.06</td>
<td>0.099</td>
<td>0.076</td>
<td>0.034</td>
<td>5*</td>
</tr>
<tr>
<td>C7PAN</td>
<td>-</td>
<td>4.7%</td>
<td>2.1%</td>
<td>0.10</td>
<td>0.03</td>
<td>-</td>
<td>0.045</td>
<td>0.018</td>
<td>-</td>
<td>8.5‡</td>
</tr>
<tr>
<td>C8PAN</td>
<td>-</td>
<td>4.4%</td>
<td>2.0%</td>
<td>0.09</td>
<td>0.03</td>
<td>-</td>
<td>0.040</td>
<td>0.018</td>
<td>-</td>
<td>8.5‡</td>
</tr>
<tr>
<td>C9PAN</td>
<td>-</td>
<td>8.5%</td>
<td>3.9%</td>
<td>0.17</td>
<td>0.06</td>
<td>-</td>
<td>0.076</td>
<td>0.034</td>
<td>-</td>
<td>8.5‡</td>
</tr>
<tr>
<td>MPAN</td>
<td>6.3%</td>
<td>5.5%</td>
<td>3.2%</td>
<td>0.10</td>
<td>0.11</td>
<td>0.04</td>
<td>0.057</td>
<td>0.049</td>
<td>0.028</td>
<td>25.0^b</td>
</tr>
</tbody>
</table>

* Rate coefficients of PNs with OH are based on those reported in the Master Chemical Mechanism where laboratory data are not available.
† estimated
a (Talukdar et al., 1995)
 b (Orlando et al., 2002)

M1 consists of all observed aldehydes and a fixed ratio of PPN:PAN of 0.15.
M2 includes all aldehydes from M1 with additional aldehydes with relative abundances estimated to be similar to those observed at other sites (outlined in Table 3).
M3 included aldehydes from M2 with an additional source of PA radicals.

In M2 we estimate the mixing ratio of other aldehydes based on prior observations at other urban locations (Grossman et al., 2003; McClenny et al., 1998; Wedel et al., 1998; Hurst-Bowman et al., 2003). We include isobutanal, along with C4, C7, C8, and C9 n-aldehydes. C4, C7 and C8 aldehydes are estimated to occur at the same mixing ratio as pentanal and nonanal is estimated to be twice as abundant as pentanal. Table 3 lists the rate constants (298K) for the reaction of C2-C9 aldehydes with OH along with the average noon-time concentrations that we observed or that we estimate. The branching ratio between aldehyde-H abstraction, which leads to PN formation, and alkyl-H abstraction, which we assume does not, increases with the carbon chain length of the n-aldehydes. For propanal, the ratio of OH abstraction at the aldehydic hydrogen to the alkyl hydrocarbons is estimated to be 95% and for butanal 90% (Jenkin et al., 1997) The ratio of aldehyde-H abstraction to alkyl abstraction for nonanal was calculated to be 50% by Hurst-Bowman et al. (2003). As an estimate for other species we smoothly connect the butanal and nonanal points, decreasing the reaction at the aldehydic hydrogen by 8% per carbon (82% for pentanal, 74% for hexanal, 66% for heptanal and 58% for octanal). For methacrolein, observations indicate 45% of OH reactions abstract the aldehydic hydrogen (Orlando et al., 1999).

In M3, we include an added source of PA radicals contributing to the formation of PAN. Roberts et al. (2001) suggest there is a large source of PA radicals other than acetaldehyde based on their observations in Nashville, TN, an urban area where isoprene dominates local photochemistry. One suggestion for this source is methylglyoxal (Romero et al., 2005), which is a product of isoprene oxidation and thus likely abundant both in Granite Bay, CA and in Nashville, TN. Based on the calculations by Roberts et al. (2001) the missing source of PA could be 2 to 3 times larger than the PA source from acetaldehyde. For M3, we add an additional source of PA radicals that fixes PAN at 70% of ΣPNs.

4.2 Partitioning of ΣPNs and estimates of OH: model results

The calculated partitioning of peroxy-nitrates using the inputs described above is shown in Table 4. PAN is calculated to be the largest portion of ΣPNs, 65% for M1, 50% in M2, and constrained to be 70% for M3. For M1, PPN, C5PAN, C6PAN and MPAN are 9.8, 7.7. 11 and 6.3% of ΣPNs, respectively. In M2, PNs that have never been observed in the atmosphere are estimated to contribute about 1/3 of the total peroxy nitrates, with C9PAN and C8PAN the most abundant of these, each at 8.5% of ΣPNs. Comparisons of ΣPNs with measurements of individual PNs suggest that the 1/3 contribution for previously unmeasured PNs is too large (Roberts et al., 2003; Rosen, 2004; Wooldridge et al., 2007). The contribution of PAN to ΣPNs observed during our previous measurements was never less than 70% and was typically 1-2 times as abundant as PAN.
MPAN to PAN ratios ranging from 3–9% during experiments. For example, Roberts et al. (1998, 2001, 2002) report daytime peak abundance of each peroxy nitrate and its ratio to PAN and acetaldehyde concentrations, similar OH profiles are derived. For example, on both 11 September and 13 September, the modeled OH peaks at 2×10^6 molecule cm$^{-3}$ while acetaldehyde and ΣPN measurements peak at midday.
on 13 September at concentrations roughly twice that of noontime concentrations on 11 September. Given the approximations that are used to calculate OH, these specific values should be interpreted with caution until a more extensive comparison of this method for inferring OH and direct OH measurements can be made. For example, it is also possible that we underestimate the OH because of treating the additional PAN source as acetaldehyde rather than assuming it is photolytic.

The diurnal profile of the calculated OH during the entire campaign is shown in Fig. 9. The black diamonds represent the mean values and the solid lines ±1σ for each 1-h bin. The OH we calculate is lower than the values derived from oxidation/dilution analyses of observations downwind of Granite Bay within the Sacramento plume by Dillon et al. (2002), Schade et al. (2002) and Dreyfus et al. (2002). Lower OH at Granite Bay than in the average over the Sacramento plume is expected because the Granite Bay site is NOx saturated and OH should increase as NOx decreases downwind (Murphy et al., 2006a, b). The asymmetry in the calculated OH abundances about noon is consistent with recent measurements of OH by Martinez et al. (2002) and Ren et al. (2003) who report maxima at ~02:00 p.m. Similar noontime OH concentrations have been reported for Los Angeles at 3–6×10^6 molecule cm\(^{-3}\) (George et al., 1999), Birmingham, UK in the wintertime (mean of 3×10^6 molecule cm\(^{-3}\)) (Heard et al., 2004), Wittle, UK outside of London at 2×10^6 molecule cm\(^{-3}\) (Emmerson et al., 2007) and Munich, Germany at 4.5–7.4×10^6 molecule cm\(^{-3}\) (Handisides et al., 2003).

5 Conclusions

We describe observations of ΣPNs, aldehydes, NO\(_2\) and O\(_3\) at Granite Bay, CA from 19 July–16 September 2001. The observations are used to characterize the partitioning of ΣPNs and to demonstrate the possibility of deterring the mixing ratio of OH if the sources of PNs were accurately known. We calculate that PAN is likely 65% of ΣPNs if acetaldehyde is the only PAN source, a value too low to be consistent with prior measurements, suggesting a prominent role for another source of PA radicals. Constraining PAN to be 70% of ΣPNs and PPN to be 15% of PAN, we estimate MPAN is 3% of ΣPNs, PiBn is 1% and that the sum of C\(_3\) and larger PNs that have not previously been observed outside the laboratory to be 15% of ΣPNs. This value for the fraction of ΣPNs that are species that have never before been observed in the atmosphere is likely too high. We suspect that this is due to PNs being out of steady state with their sources. We also calculate a diurnal profile of OH at the site that is in reasonable correspondence with direct observations at other locations and derive a median OH of 2.6×10^6 molecule cm\(^{-3}\) at noon.

We have compared a steady state and time dependent calculation for PNs showing that the steady state calculation is accurate to 30%. This implies a relatively rapid interconversion between NOx and ΣPNs in urban plumes, such that ΣPNs do not represent a terminal sink of NOx. The quantities NOx, NOy and NOx have been widely interpreted based on the assumption that NOx is quite slowly (if at all) returned to the NOx pool. Our results suggest that rethinking the use of these quantities is necessary. We calculate that peroxy nitrates are usually in steady state with NO2 on a time scale of 40 minutes. In the urban plume described in this manuscript, ΣPNs range from 1/4 to about 1/2 of NO2 during midday. This short lifetime and the high relative concentrations of peroxy nitrates compared to NOx imply that the PNs component of NOx can buffer NOx concentrations in the planetary boundary layer. Thus as the Sacramento plume (and by analogy many other urban plumes) is transported downwind PNs decompose keeping NOx higher than would be the case if PNs were a permanent NOx sink. As an alternative to the usual definitions of NOx and NO2 we suggest that NOx+PNs and HNO3+ANs (or NOx-NOx-PNs) be used in analyses of the correlations of O3 and NOx in warm urban plumes.

Acknowledgements. We gratefully acknowledge the U.S. Department of Energy support for measurements under contract AC03-76SF0009 and National Science Foundation support for analysis under grant ATM-0138669. D. Millet also acknowledges DOE GCEP fellowship for funding. We are grateful to the Eureka Union School District for the use of the measurement site.

References

Orlando, J. J., Tyndall, G. S., Bertman, S. B., Chen, W. C., and Burkholder, J. B.: Rate coefficient for the reaction of OH with CH$_2$C(CH$_3$)$_2$(O)OONO$_2$ (MPAN), Atmos. Environ., 36, 1895–1900, 2002.

Rosen, R. S.: Observations of NO$_2$, peroxy nitrates, alkyl nitrates, HNO$_3$, and total NO$_x$ in Houston, TX: implications for O$_3$ photochemistry, PhD, University of California, Berkeley, Berkeley, 2004.

