Global Biogeochemical Cycles

Supporting Information for

Partitioning N₂O Emissions within the US Corn Belt using an Inverse Modeling Approach

Z. Chen¹, T. J. Griffis¹, D. B. Millet¹, J. Wood¹, X. Lee², J. M. Baker¹,³, K. Xiao¹, P. A. Turner¹, M. Chen¹, J. Zobitz⁴, and K. C. Wells¹

¹ Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA
² School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
³ United States Department of Agriculture, Agricultural Research Service, Saint Paul, MN, USA
⁴ Department of Mathematics, Augsburg College, Minneapolis, MN, USA

Contents of this file

Text S1

Introduction

This supporting information provides additional details related to the Bayesian inversion.
Text S1. Solutions of Bayesian Inversion

\[y = K\Gamma + \epsilon \quad \text{(S1)} \]

Where \(y \) is the observed minus background mixing ratios, the columns of \(K \) correspond to the simulated mixing ratios for each of the source types being optimized, and \(\Gamma \) consists of the \textit{a posteriori} scale factors for the 7 source types.

\(\Gamma_1 \) is the scaling factor for \textit{dirA};

\(\Gamma_2 \) is the scaling factor for \textit{indA};

\(\Gamma_3 \) is the scaling factor for \textit{waste};

\(\Gamma_4 \) is the scaling factor for \textit{industry};

\(\Gamma_5 \) is the scaling factor for \textit{energy};

\(\Gamma_6 \) is the scaling factor for \textit{natsoil};

\(\Gamma_7 \) is the scaling factor for \textit{BB}.

Since the Bayesian inversion is conducted each month for each inversion, there are 24×30=720 hourly observed and simulated mixing ratios. The dimension of the matrix \(K \) is 720×7 . The cost function \(J(\Gamma) \) used to determine \(\Gamma \) is Equation 2. The \textit{maximum a posteriori} (MAP) solution of \(\Gamma \) is to minimize the cost function \(J(\Gamma) \), \(S_\epsilon \) is the observational error covariance matrix, the matrix equals \(\sigma_0 \cdot I \), where \(I \) is the identity matrix. We are assuming the observational error (\(\sigma_0 \)) is constructed and calculated via quadrative, \(\sigma_\epsilon = \sqrt{\sigma_m^2 + \sigma_p^2 + \sigma_{mh}^2 + \sigma_b^2} \), where \(\sigma_m \) is the measurement error, \(\sigma_p \) is the error from particles, \(\sigma_{mh} \) is the error from simulated mixing height, \(\sigma_b \) is the error from background mixing ratios, in a unit of ppb. For simplicity, these individual errors are independent.

\(S_\sigma \) is the \textit{a priori} error covariance matrix, it’s a diagonal matrix. Along the diagonal, the percentage uncertainty is given corresponding to \textit{the a priori} uncertainty of each source type.